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Abstract - Evolutionary algorithms (EA) offer good 
promise for automated design of analog circuits as 
well as for adaptation and automatic reconfiguration 
of programmable devices. In particular, EAs facilitate 
the design of analog circuits for very specific 
requirements, such as those related to the 
implementation of fuzzy operators, or even of 
complete fuzzy systems. The paper starts with a brief 
overview of the evolutionary process applied to circuit 
design and of a family of analog programmable 
devices that support on-chip evolution. As a case 
study, we describe the evolutionary design of a fuzzy 
controller, using re-configurable analog chips models 
and unstructured representation.  We were able to 
achieve a circuit that approximates the control 
surface of a 2-input fuzzy controller, mapping thus a 
full fuzzy system in only seven transistors.  The paper 
presents evidence that EA can provide very compact 
soluti ons for implementation of fuzzy systems, and 
that programmable analog devices are an efficient 
and rapid solution for rapid deployment of fuzzy 
systems.  
 

I. INTRODUCTION 

Evolutionary algorithms (EA) offer good promise 
for automated design of analog circuits as well as 
for adaptation and automatic reconfiguration of 
programmable devices. A variety of computational 
analog circuits and filters [1,2,3], as well as digital 
circuits [4] have been synthesized by EAs. On the 
other hand, used with reconfigurable devices in the 
loop, EAs were able to perform the configuration 
search directly in hardware, e.g. in experiments 
using Field Programmable Gate Arrays (FPGAs) 
[5,6] or Field Programmable Transistor Arrays 
(FPTAs)  [7], leading to device configurations 
(designs) that satisfied the imposed requirements. 
More details on current work in evolvable hardware 
can be found in [8] and [9].  
 This papers focuses on the application of EA to 
the design of a specific category of circuits, i.e. 

circuits used in the implementation of fuzzy 
systems. It presents both circuit solutions that could 
be fabricated as Application Specific Integrated 
Circuits (ASICs) and circuit topologies that can be 
mapped on programmable devices, such as the 
FPTAs. The claim is that EAs offer the ability of 
automatic design of very compact circuits that can 
approximate complete fuzzy systems.  
 The paper is organized as follows: Section 2 
provides a brief overview of the main concepts of 
evolutionary design of electronic circuits. Section 3 
reviews the FPTA architecture used as 
experimental platform for evolutionary experiments 
and support for the rapid implementation of 
evolved fuzzy circuits. Section 4 describes the 
particular problem being tackled.  Section 5 
illustrates how the FPTA can be used to evolve 
reconfigurable circuits implementing complete 
fuzzy systems. Section 6 presents a very compact 
evolved circuit that approximates the target fuzzy 
system, using an unstructured circuit representation.  
Finally, section 7 concludes the work. 
 

II.EVOLUTIONARY SYNTHESIS OF ANALOG 
CIRCUITS 

 
The evolution of electronic circuits is based on a 
population of competing designs, the best ones (i.e. 
the ones that come closer to meeting the design 
specifications) being selected for further 
investigation. Each candidate circuit design is 
associated with a "genetic code" or chromosome. 
 The simplest representation of a chromosome is a 
binary string, a succession of 0s and 1s that encode 
a circuit. The first step of evolutionary synthesis is 
to generate a random population of chromosomes. 
The chromosomes are then converted into a model 
that gets simulated (e.g. by a circuit simulator such 
as SPICE) and produces responses that are 
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compared against specifications. Or, the 
chromosomes are transformed into a configuration 
bitstring downloaded into a programmable device. 
 The configuration bitstring determines the 
functionality of the cells of the programmable 
device and the interconnection pattern between 
cells. Circuit responses are compared against 
specifications of a target response and individuals 
are ranked based on how close they come to 
satisfying it.   
 We can devise two methods to represent circuits 
using SPICE netlists: using models of 
programmable devices or using an unstructured 
representation. In the former, a binary 
representation is employed to provide the state of 
the switches of the configurable device, as detailed 
in the next section; in the latter, an integer 
representation is used to map a circuit, as detailed 
next. 
 The unstructured representation establishes a 
straightforward mapping between the electronic 
circuit topology and the integer strings processed 
by the GA. Each functional block of the string, also 
called gene, states the nature, value, and connecting 
points of a correspondent electronic component, 
which may include resistors, capacitors, bipolar 
transistors and MOS  (Metal-Oxide-
Semiconductor) transistors.   
 Figure 1 depicts an example of this kind of 
chromosome-circuit mapping for a common emitter 
amplifier.  
 The chromosomes are made up of genes, each of 
which encodes a particular component. In the 
example of Figure 1, the chromosome will consist 
of three genes. The gene determines the nature, 
value and connecting points of the related 
component.  The total number of connecting points 
is a parameter to be set in this representation. This 
parameter is critical to the efficiency of the 
representation: if too few connecting points are 
considered, the number of possible topologies 
sampled by the evolutionary algorithm will be 
limited; conversely, if too many connecting points 
are considered, a higher number of non-simulatable 
topologies (with floating components) will arise. 
Additionally, each connecting point may be 
classified as internal or external.  While the former 
does not serve for any special purpose, the latter is 
connected to one of the following signals: power 
supply, ground, input signal or probed output 
(Figure 1). 

 External points: 
0,1,3,4. 
Internal point: 2 

 

Gene1 = [(3,4); 1k; 1]
  

 Gene0= [(1,2); 1nF, 2] 

Gene2 = [(3,2,0); - ; 0] 
Vin 

Out 

C=1nF 

R = 1k 

Power 
Supply 
 

4

1 2 

0 

3 

4 

Figure 1– Analog Circuit’s Representation. Gene = [Connecting 
points, Component value,Component nature].   The  Component 
nature is given by:0 = transistor; 1 = resistor; 2 = capacitor 

 
 

 The advantage of this representation is its 
flexibility to map circuits with arbitrary types of 
interconnections, and, opposing to other 
representations, there is  no bias towards the 
evolution of well known topologies. In this 
particular article the components used by the EA 
are NMOS and PMOS transistors. 
 

III. FIELD PROGRAMMABLE TRANSISTOR 
ARRAYS 

 
Evaluation of a circuit directly on a programmable 
device may offer a substantial advantage in circuit 
evaluation time; in certain cases the time for 
hardware evaluation can be seconds instead of 
days, as often the case when evaluation is in 
software. Additionally, one can also evolve a circuit 
using SPICE netlists of the programmable array, 
and download the final result of evolution onto the 
chip.  
 The FPTA is a concept design for hardware 
reconfigurable at transistor level introduced in  [2]. 
As both analog and digital CMOS circuits 
ultimately rely on functions implemented with 
transistors, the FPTA appears as a versatile 
platform for the synthesis of both analog, digital 
and mixed-signal circuits. The architecture is 
cellular, and has similarities with other cellular 
architectures as encountered in FPGAs (e.g. Xilinx 
X6200 family) or cellular neural networks. One key 
distinguishing characteristic relates to the definition 
of the elementary cell, an example of cell being 
shown in Figure  2. The architecture is largely a 
“sea of transistors” with interconnections 
implemented by other transistors acting as signal 
passing devices (gray-level switches), and with 
islands of RC resources in between. 
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Figure 2  – FPTA cell topology. 

 
The status of the switches (ON or OFF) 

determines a circuit topology and consequently a 
specific response. Thus, the topology can be 
considered as a function of switch states, and can 
be represented by a binary sequence, such as 
“1011…”, where by convention one can assign 1 to 
a switch turned ON and 0 to a switch turned OFF. 
Programming the switches ON and OFF defines a 
circuit for which the effects of non-zero, finite 
impedance of the switches can be neglected in the 
first approximation  (for low frequency circuits).  
 

 
IV. EVOLUTION OF ANALOG CIRCUIT 

APPROXIMATIONS OF COMPLETE FUZZY 
SYSTEMS 

 
The evolution of analog controllers is a promising 
path for showing the potential of evolutionary 
electronics applied to potential industrial 
applications. Particularly, this case study refers to 
the evolution of circuits implementing a complete 
fuzzy system. The reader also can refer to [10], 
where EAs were applied to determine circuits that 
implement operators such as conjunctions and 
disjunctions modeled by triangular norms, which is 
a central element for fuzzy systems. 
 Most of the traditional fuzzy systems in use 
however, are quite simple in nature and the 
computation can be expressed in terms of a simple 
surface. An example is the control surface of a two-
input fuzzy controller. A fuzzy circuit could be 
synthesized to approximate this surface.     
 The example chosen is that of a fuzzy controller 
provided as a demo for the popular MATLAB 
software [11]. The “ball juggler” is one of the 
demos of the MATLAB Fuzzy Logic Toolbox. The 
fuzzy controller for the ball juggler has two inputs 
and one control output. A screen capture illustrating 
the membership functions is shown in Figure 3. The 

controller is a simple Sugeno-type with 9 rules. A 
screen capture of the control surface is shown in 
Figure 4. 
 Next we describe two approaches to evolve this 
control surface, using the FPTA model and using an 
unstructured representation. 

    

Figure 3 – Membership functions for the ball-juggler fuzzy 
controller. 

 
 
 

 

 
Figure 4  – Surface of the ball juggler fuzzy controller. 

 
 
 
 
 
 

0-7803-7282-4/02/$10.00 ©2002 IEEE



 
 

V. EVOLUTION USING THE FPTA MODEL 
 
 
The fuzzy control surface described in the last 
section has been evolved using a SPICE model for 
the FPTA cell shown in Figure 2. Two cells were 
cascaded and the Evolutionary Algorithm evolved 
the states of the ON/OFF switches.   
 The EHWPack software [12] was used in this 
experiment. EHWPack is a distributed parallel 
software-hardware environment for evolutionary 
circuit design. It runs on the 128 nodes Origin 2000 
Scalable Shared Memory Multiprocessor system 
from Silicon Graphics, and is remotely controlled 
from a local workstation. It has been developed to 
facilitate the experiments in simulated and 
hardware evolution using SPICE circuit simulation 
and the FPTA. The tool is used for the evolutionary 
synthesis and optimization of electronic circuits.  
 In this particular experiment, the Evolutionary 
Algorithm processed 128 individuals along 200 
generations. The experiment lasted around 10 
minutes when using 16 processors of the machine. 
The circuit depicted in Figure 5 was evolved. 
Figure 6 compares the attained with the target 
response.  
 
  

Figure 6 - Simulated response of a circuit 
implementing  the ball-juggler fuzzy controller  (?). 
Target characteristic shown with (+). x,y axis are 
for inputs, z (vert ical) is the output. Axes are in 
Volts. 
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Figure 5 – Evolved Circuit using SPICE model including 2 FPTA cells 
for the ball-juggler fuzzy controller. 
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 This circuit operates in voltage mode. In order to 
evaluate the performance, we use the relative error 
given by the ratio between the absolute error and 
the difference between the maximum and minimum 
values of the fuzzy control surface. The average 
error to the target was of 3.49%, and the highest 
error was of 13.3%. Figure 7 shows the fitness of 
the best individual along the generations.  The 
fitness was made up of two terms, one giving the 
Mean Squared Error to the target and another 
giving the highest error. They were aggregated after 
being normalized. 
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Figure 7 – Fitness along the generations for the ball-juggler 
fuzzy controller . 
 

VI. EVOLUTION USING UNSTRUCTURED 
REPRESENTATION 

 
   
 A compact circuit, using only seven transistors 
and operating in current mode, was evolved. This 
circuit, which approximates more accurately the 
control surface than the previous one, is depicted in 
Figure 8. The response, presented together with the 
target surface for comparison is shown in Figure 9. 
The average error achieved was of 1.93%, and the 
maximum error to the target surface was 6.7%. 
 The circuit is rather robust, and was tested at 
variations in transistor sizes, supply voltage and 
temperature, with the following results: decreasing 
the transistor sizes by a factor of 10 did not change 
the circuit response and the deviation from the 
target; average error of 1.98% and maximum error 
of 6.96% when decreasing the power supply 
voltage to 4.75V; average error of 1.94% and 
maximum error of 6.65% when increasing the 
power supply voltage to 5.25V; average error of 
1.89% and maximum error of 6.3% when 
decreasing the temperature to 0oC; average error of 
1.98% and maximum error of 7.2% when 
increasing the temperature to 55oC. 
  
 

+
-

5
V SRC+

-
V?
V SRC

In2

In1

Current Output

Figure 8 – Evolved circuit realizing ball juggler fuzzy 
controller. Transistor substrate connections at 5V for PMOS and 
0V for NMOS. VSRC at 5V; Inputs In1 and In2; Current output 
probed at the resistor (10k). 
 
 
Finally, a different model, (specific for a HP 0.5 
MOS fabrication process) led to qualitatively the 
same result, with slight increase in the error. That 
error became small again when evolution targeted a 
circuit in that specific process.  
 
 

 

Figure 9 – Comparison between response and target for the 
evolved fuzzy controller.  
 
 

VII. CONCLUSIONS 
 
 One can look at circuits with transistors as 
functional approximators –how many transistors are 
needed is only a question of how accurate a 
function needs to be. Two main results are 
suggested by the experiments in this paper:  that 
very compact solutions for complete fuzzy systems 
can be custom designed by evolutionary algorithms, 
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and that specific programmable analog devices 
could be used as a general purpose platform to 
rapidly prototype and deploy any fuzzy system. 
Thus, the programmable analog device solution 
comes between the high-performance (in speed and 
power) but very expensive and inflexible full ASIC 
solution and the less-performance but cheaper and 
flexible microprocessor solution.  
 The netlists of the circuits shown in this paper 
will be soon be available at 
http://cism.jpl.nasa.gov/ehw/public/cec02. 
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